Open Access
Emergent Scientist
Volume 3, 2019
Article Number 4
Number of page(s) 17
Section Mathematics
Published online 04 June 2019
  1. T. Lada, J. Stasheff, Introduction to SH Lie algebras for physicists, Int. J. Theor. Phys. 32, 1087–1104 (1993) [CrossRef] [Google Scholar]
  2. J. Stasheff, Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras, in: Quantum groups (Leningrad, 1990), Lecture Notes in Mathematics, Springer, Berlin, 1992, Vol. 1510, pp. 120–137 [CrossRef] [Google Scholar]
  3. M. Dehling, Shifted L bialgebras, Master’s thesis, Göttingen University, 2011. [Google Scholar]
  4. P. Michael, L-infinity algebras and their cohomology (Escholarship, University of California, 1995) [Google Scholar]
  5. J.C. Baez, A.S. Crans, Higher-dimensional algebra. VI. Lie 2-algebras, Theory Appl. Categ. 12, 492–538 (2004) [Google Scholar]
  6. J.-L. Loday, B. Vallette, Algebraic operads, in: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Heidelberg, 2012, Vol. 346 [CrossRef] [Google Scholar]
  7. Marco Manetti. Lectures on deformations of complex manifolds (deformations from differential graded viewpoint). Rend. Mat. Appl., 24, 1–183 (2004). [Google Scholar]
  8. T. Lada, M. Markl, Strongly homotopy Lie algebras, Commun. Algebra 23, 2147–2161 (1995) [CrossRef] [Google Scholar]
  9. J. Hilgert, K.-H. Neeb, Structure and geometry of Lie groups, Springer Monographs in Mathematics, Springer, New York, 2012 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.