Open Access
Issue
Emergent Scientist
Volume 7, 2023
Article Number 2
Number of page(s) 6
Section Physics
DOI https://doi.org/10.1051/emsci/2023001
Published online 28 April 2023
  1. G.-Y. Zhang, W.-W. Zhao, D.-C. Wan, Numerical simula- tions of sloshing waves in vertically excited square tank by improved MPS method, J. Hydrodyn. 34, 76–84 (2022) [CrossRef] [Google Scholar]
  2. T.B. Benjamin, F. Ursell, The stability of the plane free surface of a liquid in vertical periodic motion, Proc. Roy. Soc. Lond. A 225, 505–515 (1954) [CrossRef] [Google Scholar]
  3. Raouf A. Ibrahim. Liquid sloshing dynamics: theory and applications, Cambridge University Press, 2005 [CrossRef] [Google Scholar]
  4. C. Estoueig, D. Lourme, C. Estoueig, Etude de l’effet pogo sur les lanceurs EUROPA II et DIAMANT b, Acta Astronaut. 1, 1357-1384 (1974) [Google Scholar]
  5. Z. Zhao, G. Ren, Parameter study on pogo stability of liquid rockets, J. Spacecraft Rockets 48, 537–541 (2011) [CrossRef] [Google Scholar]
  6. P.-L. Chiambaretto, Modele vibratoire de reservoir cryotech- nique de lanceur: definition d’un meta-materiau equivalent, PhD thesis, Institut Superieur de l’Aeronautique et de l’Espace, October 2017 [Google Scholar]
  7. B.W. Oppenheim, S. Rubint, Advanced pogo stability anal- ysis for liquid rockets, J. Spacecraft Rockets 30, 360–373 (1993) [CrossRef] [Google Scholar]
  8. M. Farhat, Aeroelasticity and fluid-structure interaction, chapter 9: sloshing Dynamics, University Lecture, EPFL, 2018 [Google Scholar]
  9. A. Maleki, M. Ziyaeifar, Sloshing damping in cylindrical liquid storage tanks with baffles, J. Sound Vibr. 311, 372–385 (2008) [CrossRef] [Google Scholar]
  10. M.A. Goudarzi, S.R. Sabbagh-Yazdi, W. Marx, Investi- gation of sloshing damping in baffled rectangular tanks subjected to the dynamic excitation, Bull. Earthquake 8, 1055–1072 (2010) [CrossRef] [Google Scholar]
  11. M. Isaacson, S. Premasiri, Hydrodynamic damping due to baffles in a rectangular tank, Can. J. Civil Eng. 28, 608–616 (2001) [CrossRef] [Google Scholar]
  12. A. Sauret, F. Boulogne, J. Cappello, E. Dressaire, H.A. Stone, Damping of liquid sloshing by foams, Phys. Fluids 8 (2015) [Google Scholar]
  13. A. Bronfort, H. Caps, Faraday instability at foam-water interface, Phys. Rev. E 86, 066313 (2012) [CrossRef] [Google Scholar]
  14. B. Meunier, M. Roux, Sloshing of viscous fluids: application to aerospace, Bachelor thesis, 2021 [Google Scholar]
  15. Science Innovation and Measurement Canada Economic Development Canada, Volume correction factors to 15 C for isopropyl alcohol (anhydrous), September 2016 [Google Scholar]
  16. E.A. Gonzalo Vazquez, J.M. Navaza, Surface tension of alcohol water + water from 20 to 50 .degree.c. j., Chem. Eng. Data 40, 611–614 (1995) [CrossRef] [Google Scholar]
  17. Federal Institute of Metrology METAS, Swiss gravity zones, Gravity acceleration in Ecublens (VD), 2020 [Google Scholar]
  18. A. Kolaei, S. Rakheja, Free vibration analysis of coupled sloshing-flexible membrane system in a liquid container, J. Vibr. Control 25, 84–97 (2019) [CrossRef] [Google Scholar]
  19. C. Zhang, P. Su, D. Ning, Hydrodynamic study of an anti- sloshing technique using floating Foams, Ocean Eng. 175, 62–70 (2019) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.