IPT 2018
Open Access
Emergent Scientist
Volume 3, 2019
IPT 2018
Article Number 6
Number of page(s) 8
DOI https://doi.org/10.1051/emsci/2019005
Published online 23 August 2019
  1. H. Lamb, On the vibrations of an elastic sphere, Proc. Lond. Math. Soc. 1, 189–212 (1881) [CrossRef] [Google Scholar]
  2. H. Lamb, On the vibrations of a spherical shell, Pro. Lond. Math. Soc. 1, 50–56 (1882) [Google Scholar]
  3. W.E. Baker, Axisymmetric modes of vibration of thin spherical shell, J. Acoust. Soc. Am. 33, 1749–1758 (1961) [CrossRef] [Google Scholar]
  4. A. Silbiger, Nonaxisymmetric modes of vibration of thin spherical shells, J. Acoust. Soc. Am. 34, 862 (1962) [CrossRef] [Google Scholar]
  5. A.R. Robinson, M.S. Zarghamee, A numerical method for analysis of free vibration of spherical shells, AIAA J. 5, 1256–1261 (1967) [CrossRef] [Google Scholar]
  6. S.K. Panda, B.N. Singh, Nonlinear free vibration of spherical shell panel using higher order shear deformation theory–a finite element approach, Int. J. Pres. Vessels Pip. 86, 373–383 (2009) [CrossRef] [Google Scholar]
  7. A. Goriely, M.B. Amar, Differential growth and instability in elastic shells, Phys. Rev. Lett. 94, 198103 (2005) [CrossRef] [Google Scholar]
  8. K.A. Kuo et al., Small oscillations of a pressurized, elastic, spherical shell: model and experiments, J. Sound Vib. 359, 168–178 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.