Open Access
Issue
Emergent Scientist
Volume 2, 2018
Article Number 1
Number of page(s) 10
DOI https://doi.org/10.1051/emsci/2017010
Published online 23 February 2018
  1. J.-P. Kneib, et al., ApJ 607, 697 (2004) [NASA ADS] [CrossRef] [Google Scholar]
  2. J. Richard, et al., MNRAS 413, 643 (2011) [NASA ADS] [CrossRef] [Google Scholar]
  3. S. Dye, et al., MNRAS 388, 384 (2008) [NASA ADS] [CrossRef] [Google Scholar]
  4. L.V.E. Koopmans, et al., Astro2010: the astronomy and astrophysics decadal survey, science white papers, no. 159 (2009) [Google Scholar]
  5. Norsiah Hashim, et al., arXiv:1407.0379 (2014) [Google Scholar]
  6. E. Louis Strigari, Phys Rep 531, 1–88 (2013) [NASA ADS] [CrossRef] [Google Scholar]
  7. J. Schwab, et al., ApJ 708, 750 (2009) [NASA ADS] [CrossRef] [Google Scholar]
  8. G. Jiang, C.S. Kochanek, ApJ 671, 1568 (2007) [NASA ADS] [CrossRef] [Google Scholar]
  9. C. Ma, T.-J. Zhang, ApJ 730, 74 (2011) [NASA ADS] [CrossRef] [Google Scholar]
  10. J. Enander, E. Mörtsell, JHEP 2013, 31 (2013) [CrossRef] [Google Scholar]
  11. V. Bonvin, et al., MNRAS 465, 4914 (2017) [NASA ADS] [CrossRef] [Google Scholar]
  12. G. Adam Riess, et al., ApJ 826, 56 (2016) [NASA ADS] [CrossRef] [Google Scholar]
  13. M. Maturi, et al., A&A 567, A111 (2014) [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  14. S. Adam Bolton, et al., ApJ 638, 703 (2006) [NASA ADS] [CrossRef] [Google Scholar]
  15. B. Abolfathi, et al., arXiv:1707.09322 (2017) [Google Scholar]
  16. Dark energy survey collaboration and others, arXiv:astro-ph/0510346 (2005) [Google Scholar]
  17. Z. Ivezic et al., AAS Bull. Am. Astron. Soc. 41, 366 (2008) [Google Scholar]
  18. R. Laureijs et al., 2011, Reference: ESA/SRE(2011)12 [Google Scholar]
  19. C.R. Bom, et al., A&A 597, 13 (2017) [Google Scholar]
  20. G. Seidel, M. Bartelmann, A&A 472, 341 (2007) [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  21. R. Joseph, et al., A&A 566, A63 (2014) [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  22. C. Avestruz, et al., arXiv:1704.02322 (2017) [Google Scholar]
  23. M. Mohammed, et al., Machine learning: algorithms and applications (CRC Press, Boca Raton, Florida 2016) [CrossRef] [Google Scholar]
  24. R. Gavazzi, et al., ApJ 785, 144 (2014) [NASA ADS] [CrossRef] [Google Scholar]
  25. F. Ostrovski, et al., MNRAS 465, 4325 (2017) [NASA ADS] [CrossRef] [Google Scholar]
  26. D. Baron, D. Poznanski, MNRAS 465, 4530 (2016) [NASA ADS] [CrossRef] [Google Scholar]
  27. E.P. Alessandro Villa, et al., Articial neural networks and machine learning–ICANN 2016: Proceedings of 25th International Conference on Articial Neural Networks, volume 9887, Springer, Barcelona, Spain, 2016 [Google Scholar]
  28. C.E. Petrillo, et al., MNRAS 472, 1129–1150 (2017) [NASA ADS] [CrossRef] [Google Scholar]
  29. T.A. Jelte de Jong, et al., Exp. Astron. 35, 25 (2013) [Google Scholar]
  30. F. Lanusse, et al., MNRAS, arXiv:1703.02642 (2017) [Google Scholar]
  31. C. Jacobs, et al., MNRAS 471, 167–181 (2017) [NASA ADS] [CrossRef] [Google Scholar]
  32. C. Schaefer, et al., A&A 9 (2017) [Google Scholar]
  33. D. Yashar Hezaveh, et al., Nature 548, 555557 (2017) [Google Scholar]
  34. L.P. Levasseur, et al., ApJL 850 (2017) [Google Scholar]
  35. S. Mollerach, E. Roulet, Gravitational lensing and microlensing, World Scientific, Singapore, 2002 [CrossRef] [Google Scholar]
  36. A. Kassiola, I. Kovner, ApJ 417, 450 (1993) [NASA ADS] [CrossRef] [Google Scholar]
  37. C.H. Keeton, arXiv:astro-ph/0102341 (2001) [Google Scholar]
  38. F. Rosenblatt, Principles of neurodynamics: perceptrons and the theory of brain mechanisms, Spartan Books, 1962 [Google Scholar]
  39. E. David Rumelhart et al., Parallel distributed processing, explorations in the microstructure of cognition: foundations, volume 1, MIT Press, Cambridge, Massachusetts, 1986 [Google Scholar]
  40. I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press, Cambridge, Massachusetts, 2016, http://www.deeplearningbook.org [Google Scholar]
  41. C.M. Bishop, Pattern recognition and machine learning, Springer-Verlag, New York, 2006 [Google Scholar]
  42. S.J. Pan, Q. Yang, IEEE TKDE 22, 1345 (2010) [Google Scholar]
  43. R. Girshick, et al., Rich feature hierarchies for accurate object detection and semantic segmentation, in: Proceedings of the2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR '14, IEEE Computer Society, 2014, 580 p. [CrossRef] [Google Scholar]
  44. R.H. Sanders, MNRAS 407, 1128 (2010) [NASA ADS] [CrossRef] [Google Scholar]
  45. F. Buitrago, et al., MNRAS 428, 1460 (2013) [NASA ADS] [CrossRef] [Google Scholar]
  46. MATLAB. version 9.0 (R2016a), The MathWorks Inc., Natick, Massachusetts, 2016 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.